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Abstract. We describe a recently developed generalization of the Pd@rsgrere method, to
represent pure states of a three-level quantum system in a convenient geometrical manner.
The construction depends on the properties of the gr6Ui3) and its generators in the
defining representation, and uses geometrical objects and operations in an eight-dimensional
real Euclidean space. This construction is then used to develop a generalization of the well
known Pancharatnam geometric phase formula, for evolution of a three-level system along a
geodesic triangle in state space.

1. Introduction

Some time after the discovery by Berry in 1984 of the quantum mechanical geometric phase
in the framework of cyclic adiabatic evolution [1], Ramaseshan and Nityananda pointed out
in an important paper [2] that as early as 1956 Pancharatnam had put forward closely
related ideas in the context of polarization optics [3]. Subsequently Berry himself analysed
the significance of Pancharatnam’s work in the light of later developments [4]. The more
recent quantum kinematic approach to the geometric phase clearly brings out the way in
which a phase essentially identified by Pancharatnam is one of the two basic ingredients
involved in the very definition of the quantum geometric phase, the other being the so-called
dynamical phase [5].

Pancharatnam’s work made essential use of the Pdrsgnere representation for the
manifold of pure polarization states of a plane electromagnetic wave [6]. As is well known,
diametrically opposite points on the Poingasphere correspond to mutually orthogonal
polarization states incapable of interfering with one another. For two states of polarization
not mutually orthogonal in this sense Pancharatnam introduced a physically motivated
convention or rule which would tell us when these two states are ‘in phase’, i.e. capable of
interfering constructively to the maximum possible extent. More precisely, this relationship
is defined at the level of field amplitudes mapping onto given points on the Peigphere.

He then went on to show that this relation of being ‘in phdseiot transitive That is, if
we take three polarization statds B and C on the Poinca sphere, and arrange that the
fields mapping ontad and B are ‘in phase’, and similarly those mapping o@andC are
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‘in phase’, then in general the fields mapping ontcand C are not ‘in phase’. He also
calculated the extent to which these last two fields are ‘out of phase’ and showed that this
‘phase difference’ equals one half the solid angle on the Pdingainere subtended by the
spherical triangleA BC obtained by joining the verticeg, B and C by great circle arcs
(geodesic arcs) on the sphere.

This fundamental and early result of Pancharatham has found a natural interpretation
in the context of two-level quantum systems, for which the space of pure state density
matrices is again the sphes8. In the modern terminology for geometric phases, one is
(most often) interested in cyclic evolution in the state space, and the calculation of the
associated geometric phase. Evolution along a great circle as& @particularly simple
in that it can be generated by a constant (i.e. time-independent) Hamiltonian in such a way
that the dynamical phase vanishes. A geodesic trianglé?is then the simplest and
most elementary, yet nontrivial, cyclic evolution one can imagine for a two-level system;
it can be produced by a piecewise constant Hamiltonian, and the dynamical phase can
be arranged to vanish identically. Then the meaning of Pancharatnam’s result is that the
resulting geometric phase is one half the solid angl&sdsubtended by the triangle [7].

We may note in passing that while Pancharatnam’s original result refers principally
to the vertices A, B and C of a spherical triangle or$?, and calculates the degree of
nontransitiveness of the relation of two field amplitudes being ‘in phase’, in casting it into
the modern geometric phase language we are equally concerned with the great circle arcs
connecting these vertices, since we deal with continuous cyclic unitary or Hamiltonian
evolution of pure quantum states. It is for such evolutions that geometric phases are
customarily calculated. Two more remarks are not out of place at this point. One is that
in fact geometric phases can be perfectly well defined for noncyclic (and even nonunitary)
evolutions, though in this paper we shall not be concerned with them [8]. The other is
that for piecewise geodesic and overall cyclic evolutions in a general quantum system,
geometric phases get related to certain invariants introduced by Bargmann long ago [9], and
these invariants are in conception very close to Pancharatham’s original motivations.

We shall refer to the ‘half the solid angle’ result as the Pancharatnam formula for
geometric phases for two-level systems undergoing piecewise geodesic cyclic evolution
along a spherical triangle a§f. The main purposes of this paper are: (i) to present a recently
developed generalization of the Poineaphere representation for pure states of three-level
guantum systems [10]; and (ii) to then obtain a generalization of the Pancharatnam formula
for such systems.

The material of this paper is arranged as follows. Section 2 outlines the generalization
of the Poinca& sphere for three-level systems. The Poiacsphere S2, gets replaced by
a certain four-dimensional simply connected regi6h, contained wholly within the unit
sphere,S’, in eight-dimensional real Euclidean space. The transitive actiofiUaf3) on
O, via eight-dimensional orthogonal rotations, some intrinsic properti€8,aind a local
coordinate system fo®), are described so as to assist in forming a picture of this object.
Section 3 recalls very briefly the main features of the quantum kinematic approach to the
geometric phase of a general quantum system. Both the roles of ray space geodesics and the
Bargmann invariants are highlighted. The case of two-level systems, and the statement of
the Pancharatnam formula, are then given. It is pointed out that it is a fortunate circumstance
that ray space geodesics and geodesics%happen to coincide in the case of two-level
systems. Finally the general formula for the geometric phase for any cyclic evolution of the
three-level system is given. Section 4 discusses the properties of ray space geodesics for
three-level systems, and their representation as curvés iWe find that the latter, while
they are plane curves, are not geodesics in the geometrical seisée W also find that it
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is possible to construct constant Hamiltonians which would give rise to evolution along any
such geodesics. Section 5 puts together the ingredients of the previous sections to develop
the generalized Pancharatnam formula for three-level systems. This involves describing the
most general geodesic triangle for a three-level system state space, and then computing its
geometric phase. Whereas a geodesic triangl&©mvolves three independent intrinsic
parameters, for a geodesic triangl&lrit turns out that four independent intrinsic parameters

are needed. The geometric phase then depends on all four of these parameters, and this
is borne out by the explicit formula for the phase. Section 6 contains some concluding
remarks.

2. Generalization of the Poincaé sphere representation for three-level systems

We recall very briefly the salient features of the Poiicsphere representation for two-level
systems, using throughout the notations and terminology of quantum mechanics [12]. We
deal with a two-dimensional complex Hilbert spag¢?, unit vectors in which are denoted

by v, ¥’ .... The density matrix corresponding to a pure stdteis given by the projection

p = ¥y, Its expansion in terms of the Pauli matrices, leads to the Poincarsphere
construction:

p=yy'=30+n-0)
pl=p?=p>0 Trp=1< (2.1)
n‘=n n-n=1&nc¢eS2

Thus each pure state in the quantum mechanical sense, or normalized ray, corresponds

in a one-to-one manner to a point on the two-dimensional unit spiséreembedded in
Euclidean three-dimensional spaR€. Since

p=yy'=30+n-0) P =yYI=30+n"-0)>

(2.2)
Tr(p'p) = (W, ¥)IP = 3L +n - n)

we see that diametrically opposite points §f correspond to mutually orthogonal rays
or Hilbert space vectors. Herg)', ) is the inner product if{®. Finally, if a vector,
¥ € ‘H®@, is subjected to a transformation,e SU(2), the representative point € S?
undergoes an orthogonal rotation belongingstd(3):

v =uy ueSUR =
n} = Rjx(u)ny (2.3)
Rjx(u) = 3 Tr(ojuou') Ru) € SO(3).

As is well known, all element® € SO(3) are realized in this way, and we have the coset
space identifications? = SU(2)/U (1) = SO(3)/S0(2).

Now we present the natural generalization of this construction to three-level systems.
We deal with a three-dimensional complex Hilbert spae€’), elements of which will be
again denoted by, ', .... The roles ofSU(2) and the Pauli matricesy, are now played
by the groupSU (3) via its defining representation, and the eight Hermitian generatprs,
in this representation [13]:

SU(3) = {A = 3 x 3 complex matrixA'A = 1, detA = 1} (2.4a)
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(2.4b)

0
0
0 0 —i
Asz(o 0 0) Mz(
i 0 O
0 O
0
i

0 ) 0 0
,\7=<o —i) x8=<o 1 o).
0i 0 V3\o 0 -2

The matrices\, obey characteristic commutation and anticommutation relations:

[)Lrv )L:] = 2ifrst)\t {)\rs )‘5} = %ars + Zdrst)\t
V3 1
fizz=1 Jass = fers = > J1a7= faa6 = fo57= faas = fs16 = fesr =3

L (2.5)

1
d118 = doog = d33g = —dggg = We daag = dssg = deeg = d773 = _27«f3

d146 = dis7 = —dpa7 = dosp = dass = dass = —dzes = —da77 = 3.

Here we have given the independent nonvanishing components of the completely
antisymmetricf,;, and the completely symmetrit;,,; the former are the&SU (3) structure
constants. Thes¢ andd symbols allow us to define both antisymmetric and symmetric

products among real vectors b, ... in real eight-dimensional Euclidean spa@e?, the
result in each case being another such vector [10]:
(aprb), = frstasbt ab=-b.a (26)

(a*b),=f3dmasb, axb=>bxa.
The significance of these definitions is tlath andab transform just as andb do, under
the eight-dimensional adjoint representationSaf (3). The matrices of this representation
are defined similarly to equation (2.3):

A € SU(3) — Dy(A) = 2 Tr(x, Ax AT
D(A")D(A) = D(A'A) (2.7
D(A) € SO(8).

However, in contrast to th8U (2)—-S O (3) case, here the matricd3(A) that arise are only

an eight-parameter family, and so a very small portion indeed of the full twenty-eight-
parameter groug O (8). In any case the required properties of the products (2.6) are:

D(A)a,D(A)b = D(A)(a.b)
D(A)a x D(A)b = D(A)(a x b).
With this background, we can handle general pure state density matrices for three-level

systems [10]. Given a normalizetl ¢ H®, we form the density matriy = vy and
expand it in terms of the unit matrix and the:

veH® Wy =1

p=vy=11+3n N,
We then find in place of equation (2.2):
pl=p>=p>0 Tro=1len"=n n-n=1 nxn=n. (2.10)

(2.8)

(2.9)
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Thus each normalized ray for the three-level system corresponds uniquely in a one-to-one
manner to a unit vector € S7, the seven-dimensional unit sphereRd, which moreover
obeys the conditiom » n = n. The set of all such real unit vectors 8, a subset of

S7, is the analogue of the Poinéasphere for three-level systems. Since it is in fact a very
small part ofS’, we give it a special symbol:

O={neRn-n=Ln+rn=n}cs cRrRE (2.12)
This set, O, is a connected, simply connected four-dimensional region contained, in
and its points correspond one-to-one to pure states of a three-level system. It is in fact a
representation of the coset spati€ (3)/U (2).

Some interesting geometric properties@fmay be mentioned. For two unit vectors,
v andy’ € H®, we find:
p=vy o=y =TI e) =1, WP = 3+ 2n - n)
21 (2.12)
3
Thus mutually orthogonal vectors H® do not lead to antipodal or diametrically opposite
points onO, but rather to points with a maximum opening angle%‘—)fradians. Indeed, if

n € O, then—n ¢ O. If one takes the three canonical basis vector$/6¥ as usual, they
lead to three distinguished points or ‘poles’ 6h

V3

0< Tr(p'p) <14 0<cost(n - n) <

(1,0,00" - ng = - ng =3 rest zero

3 2.13
0,1,07 - nz = —\g ng =3 rest zero (2.13)
0,0, )7 > ng=-1 rest zero

each making an angle c% with any other. These properties 6f may help one make
some sort of mental picture of this geometrical object embedded.in
The action ofSU (3) on vectors inH® leads to adjoint action o®:

AeSU®B): Yy =AYy = n' = D(A)n. (2.14)

Thus one has here a (small set of) rigid eight-dimensional orthogonal rotations, which will
prove convenient later on. Moreover, sinCeis the coset spacgU (3)/U (2), this adjoint
action of SU(3) on O is transitive. This will also be exploited later. Genetsd (8)
rotations of course do not preserve the regidmf S’.

For practical calculations it is convenient to introduce four independent local angle type
variables which can be used as coordinates over (almost afPoflet us write a general
unit vector,y» € H®, as

141

V= (wz) VY =191l + [l + 1Yal® = 1. (2.15)
Vs

Then omitting the part o) corresponding tafs = 0 (this is a two-dimensional region,

essentially ars?, see below), over the rest 6f we introduced, ¢ and x1, x» in this wayt:

(Y1, ¥, ¥3) = (overall phasgg”* sind cosg, €2 sind sing, cosy)

2.16
0<0<7  0<¢<y  O<pme<2r (2.16)

T The choice of these variables differs from that in [10].
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Figure 1. A pictorial description of almost all of the spac2 (the space of all states of the
three-level system). The local coordinatesp and x1, x2 are such tha# and¢ define a point
in the positive octant 082, i.e. 0< 6, ¢ < % and for a given point on this octant we have a

torus defined by two-angle variablesQy1, x2 < 2.

The limits ond, ¢ reflect the nonvanishing af;, and the fact that the real three-dimensional
unit vector (|y1], |¥2l, |¥3]) has non-negative components. Thysp denotes a point on
the first octant of ars2. Given |y3| > 0, x1 is the phase ofy; relative toyz (and is well
defined except whes = 7); and x> is the phase of/, relative toys (and is well defined
except wherp = 0), see figure 1. We need to remember thap determine the magnitudes
of the components ofy, while x1, x> give their relative phases. All four taken together

determine one point in the portion & with 3 # 0.
We can easily obtain the expressions fgrin these local coordinates. Combining

equations (2.9) and (2.16) we get:

ny = El/ﬁ)»rlﬁ
2
n= fS(sinze Sing cosg cos x2 — x1), SiM’ 6 sing coseg sin(x2 — x1).

1 sir?6(cos ¢ — sir? ¢), sind cosd cosep cosyy, (2.17)

— sinf cosy cosg sinxy, sinf cosy sing cosyz,
1
23
The recovery of the Poindarsphere,s?, for a two-dimensional subspace &f®

is straightforward. Consider, as an example, vecigore H® with a vanishing third
component (just the points @ omitted in the local coordinatization (2.16) 6%):

V1 €% cosgp
-(3)- ()
0 0 (2.18)

0<¢<

— sine cosh sing sin xo,

(1—3cog 9)).

T
5 0< x1, x2 < 2m.
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Then the eight-vecton has only four nonvanishing components:

3 . . .
(n1, no, n3) = g (sin2p cos(x2 — x1), SiN 2p sin(x2 — x1), COS &)
(2.19)

S NI

ng

ng = 5=n5=n7=0.

As ¢ and(x2— x1) vary in the appropriate ranges, we see that we obtain a certain sgfgere,
embedded withir®Q, centred on the point, 0,0, 0, 0, 0, O, %), of radius@, and contained
entirely within the 1-2—-3-8 subspace BF. If we consider two-dimensional subspaces in
H® different from (2.18), we clearly obtaifiU (3) transforms of the above situation. All
these variouss?’s are off-centre inR8: indeed their centres lie on a sphereRf centred

at the origin ofR® and of radius;.

3. Background to the geometric phase and Pancharatham’s formula

Consider a general quantum mechanical system whose pure states are described by unit
vectors in a complex Hilbert spac{, of any dimension. The corresponding ray space

will be denoted byR. Let C be a continuous piecewise smooth parametrized curve of unit
vectors inH:

C={yG)s1<s<s2b CH (3.1)
and letC be its image inR, likewise continuous and piecewise smooth:
C=1{p) =¥ Y s <s <s2} CR. (3.2)

In casey (s2) andy (s1) determine the same ray, and in particufais2) = ¥ (s1) in which
case(C is closed, the imag€ is closed; however, in general we need not assume this.
The geometric phase associated withs the difference between a total (or Pancharatnam)
phase and a dynamical phase, each of which is a function@l[6F.

(pg[C] = (/)p[c] - Sodyn[c]
@p[C] = arg(y (s1), ¥ (s2)

! 3.3)
genlC] = Im / ds (4 (s), v/ (5)).

The quantity ¢,[C], is invariant under both local smooth phase changes(in), and under
smooth reparametrizations—for these reasons it is a geometric quantity dependént on
rather than orC.

In this context an important role is played godesics in the spacg [5]. Given the
continuous curve&® C R (with nonorthogonal end points for definiteness), a nondegenerate
positive definite length functionalZ[C], can be set up, which is also reparametrization
invariant:

52 . . . . 1
L[C] =f ds {(¥ (), ¥(5)) — (Y (), ¥ ()W (s), Y (s)}2. (3.4

Extremizing this functional (with fixed end points), we arrive at the concept of geodesics
in R. Any Hilbert space lift of such a geodesic, with any choice of parametrization, may
then be called a geodesic . It then turns out that every geodesic & has vanishing
geometric phase:

C = geodesic iMR = ¢,[C] =0 (3.5)
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and this accounts for their importance. The simplest description of a geodesic, which can
always be achieved, is as follows. Let the end pointsCobe p® and p®@, assumed
nonorthogonal, and choose unit vectgrs’ andy @ such that:

p® = Dy p@ = @y 1

3.6
(v P, @) = real positive (3-6)

Thusy® andy @ are ‘in phase’ in the Pancharatnam sense. Then the ged@gsic R
connectingo™ to p@ is the ray space image of the following cur@g, C H:

Cgeoz {¥ ()]0 < s < 50}
¥ (s) = ¥ (0) coss + v/ (0) sins

Y (0) =y® V(0 = @2 —yPy® @) /a- w?, w@))z)%
so = cos Ly, ¢ @),

(3.7)

Exploiting the fundamental result (3.5) we obtain a very attractive expression for
the geometric phase in the following particular situation. Choose a set of points
oD, p@ .. p™ e R in a definite sequence, assume for definiteness that no two
consecutive points are mutually orthogonal, and also pidtand oY are nonorthogonal.
Connectp® to p@, p@ to p@, ..., p™ to p® by geodesic arcs, so that we obtain a
closed curveC C R in the form of ann-sided polygon made up of geodesic pieces. Then
we have [5]:

C = geodesic polygon itR with verticesp®, p@, ..., p®
9e[C] = —argy @, y )Y@, ¢ ©) - (™, yD) @8)
=—argTpPp@ ... p™) .
p® = Dy @ = @y @t P = Dy T
Here it is evident that the phases of the vectot®, v @, ..., v® can be freely chosen.

The result (3.8) connects the geometric phase for a closed polygon to the Bargmann invariant
of quantum mechanics, the expressign®, v @)@, v®)... (™, v?D), namely: the
former is the negative of the argument of the latter. The point to emphasize is that the
definition of the Bargmann invariant requires specifying just the vertices of the polygon,
while the definition of the geometric phase requires also connecting them in sequence by
geodesic arcs so that we have a closed l6og R.

With this background from the general theory of the geometric phase we relate these
results to the case of two-level systems, quote the Pancharatnam formula and then give the
general expression fag,[C] for three-level systems. For two-level systems we have seen
that the spac& is the Poinca sphereS?. It is now a happy coincidence that geodesics
in R map exactly on to geodesics ¢i? in the more familiar Euclidean sense. This can
be seen as follows. Without loss of generality, by using a suitdbl€?) transformation,
we may assume that the poing§? and p® to be connected by a geodesic are the points
n® = (0,0,1), n® = (sin2x, 0, cos2) on S?, with representative vectorg® and
¥ @ e H®@ chosen as follows:

1 COSu
v = (0) v = (sina) ' (3.9)
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Then applying the result (3.7), the ray space geodesic conneggfintp p@ is determined
as follows:

coss
vis) = (sins )
n(s) =Trp(s)o = (Y (s), oY (s))
= (sin 2, 0, cos 3) 0<s<a.

(3.10)

We see that the curve described hys) on S? is indeed a great circle arc, a part of the
‘Greenwich meridian’; and by the action 61/(2) on R translated into the action &fO (3)

on §2, we conclude thaany ray space geodesic iR appears as some great circle arc on
$2. Thus the two definitions of geodesics do coincide in this case.

Let now A, B andC be any three points 06, no two being diametrically opposite to
one another. Joining them by great circle arcs (each lessthamxtent) we get a geodesic
triangle A(A, B, C) on S. Then the Pancharatnam formula [3, 4, 2] is the statement that
for any two-level system:

9.[A(A, B,O)] = 39
Q = solid angle subtended by the triangle B, C at the origin ofS?.
Here the right-hand side is interpreted to be positive (negative) if, as viewed from the outside
of 2, the triangleABC is described in the counter clockwise (clockwise) sense. It is this
formula that we shall generalize in section 5.

Now we give the general formula for geometric phases for three-level systems [10].
Consider a closed loop c O, and assume for definiteness thjat # 0 throughout. Then
¢,[C] is given by the following integral along':

0,[C] = _?§ Sirf 0(cos ¢ dy1 + Sirf ¢ dyo). (3.12)
cco

We note that this formula holds whef is a closed loop. In the succeeding sections we
develop the properties of geodesics¢and then generalize equation (3.11).

(3.11)

4. Ray space geodesics for three-level systems

We have seen that the transitive actionséf(3) on the ray space), for three-level systems
is given by (an eight-parameter subset of) rigid orthogonal rotations in real Euclidean eight-
dimensional space, when points ©f are identified with vectors as in equation (2.11).
Based on this we may describe the details of any one conveniently chosen geod®@sic in
and then any other would be a suital§l® (8) transform of this one, so that the geometrical
shape and structure in an intrinsic sense are unaltered.

Guided by the constructions of section 3, equations (3.9) and (3.10) let us choose two
points in© corresponding to the following two unit vectors #®:

0 0
y® = (0) Y@ = (sina)
1 cos

n® = (0,0,0,0,0,0,0, —1) (4.1)
3 . . 1
n? = £ (O, 0, —sirfa, 0,0, 2 sina cosa, 0, — (1 — 3cog a)) )
2 V3

It is easy to see that, giveany pair of three-level pure-state density matrices) and
0@, such that TP p@) = cog o > 0, we can exploit the action &fU (3) on H®, and



2426 Arvind et al

freedom of phases, to put? andp@ into the configurations corresponding to the vectors
¥ andy @ above. Then the ray space geodesS(g, connectingn™ andn® is easily
found on the basis of the general formula (3.7):

0
Y(s) = (Sins )
COSs

Cgen: ms) = ‘fvf(s)uws) (4.2)
— gs (O, 0, —sirs, 0, 0, 2 sins coss, 0, ;é(l — 3co§s)> 0<s <a.

This curve{n(s)} ¢ O has only three nonvanishing components, namejy), ne(s) and
ng(s). The interesting questions are whether it is a plane curve, whether it coincides with
a geodesic arc as defined in the sense of eight-dimensional Euclidean geomé&tryaod
whether it has any other important geometric features.

The first observation we may make is that since the compongnis,, n4, ns andny
all vanish, this curvecég{,, lies entirely in a three-dimensional subspaceRst By SU(3)
action this statement is then true for all ray space geod&gjgswhen drawn inO. Next
we remark that a geodesic 61 in the Euclidean sense would be part of the intersection of
a two-dimensional plane ifR® passing through the originwith S7. We can immediately
see thatCéfé)o is not of this kind for example, the three vectors(0), n(3) andn(a) are
easily checked to be linearly independent. Thus, in striking contrast to the situation on the
Poincaé sphereS?, for two-level systems, hengy space geodesics @ are not geodesic
arcs in the sense of Euclidean eight-dimensional geometry

Nevertheless we can show tha?, is a plane curve, though the plane on which it lies
is off centre inR8, i.e. it does not pass through the origin or the centr&’ofFor this we

need to work with the combinationé@ and "3‘75/3”8 obtained fromnz andng by an
orthogonal transformation. Then we find:

V3ns(s) +ng(s) _ 1

2 2
ne(s) = +/3sins coss (4.3)
n3(8) — V3ns(s) _2\[3”8“) = —\/23(1 —2cogs).

Thus, in the three-dimensionat—e—ng subspace, this geodesﬁ]@%{) is a curve lying in the

two-dimensional plané@ = —%. Ray space geodesicSye, for three-level systems,
when described as curvéa(s)} Cc O, are really like arcs of constant latitude 6A, and
not geodesic arcs at all. For this reason, hereafter the term geodesic will refer exclusively
to ray space geodesics, with no further qualification.

In the description ofY using coordinates, ¢ and x1, x» the geodesicc?é?;0 appears as
follows:

CO o) =s ()= % x1(s) undefined  yo(s) =0  0<s <a.
(4.4)

Thus the projection oCé?o onto the octant of? with spherical polar angles, ¢ happens

to be a great circle arc in the usual sense. However, this is not expected to be true for a
general geodesi€geo C O.
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One can now ask for the most general three-level system Hamiltonian which reproduces
the evolution ofyr(s) with respect tas, as already specified in equation (4.2), and whether
it can be independent of. A general Hermitian Hamiltonian can be written in terms of
nine real functions of as
H(s) = ho(s) + h(s) - A (4.5)

while the quantum mechanical evolution equations@s) and p(s) become:

. d
ICTI//(S) = H(s$)Y(s)
s (4.6)

En(s) = 2h(s) n(s).
ds

An easy calculation shows that the most genéf&) has four independent real arbitrary
functions ofs, namelya(s), b(s), c(s) andd(s) in:

h(s) = (a(s) coss, b(s) COSs, V3e(s) + d(s)(coS s — sirts),
—a(s) sins, —b(s) sins, d(s) coss sins, —1, c(s))

4.7)
ho(s) = ic(s) —d(s)sirts
0 /3 .
Moreover we also find with this general Hamiltonian:
Tr(p(s)H (s)) = (Y (s), H($)¥ (5))
= ho(s) + ;H(S) - h(s)
=0. (4.8)

This is consistent with the vanishing of the dynamical phase as the state evolves along
{¥(s)} of equation (4.2), which is directly checked to be true. In addition if we wish to
have a constant Hamiltonian producing this evolution, we must@ét= b(s) = d(s) = 0,

¢(s) = co = constant and then we get:

2

HE o= ( 1433+ /\8> o — A7 4.9

constant \/g ( )

It is possible to express this simple constant Hamiltonian directly in terms of the end points
n® andn® of the geodesi€ {2, given in equation (4.1). Namely one finds:

(n'Pn?), = —3(sina cosa)s,7 (4.10)
which, if we set the constant to zero, leads to:
nPn@.x

InPn@|

We can now generalize these results to any geod€gie C O connecting any two
points,n, n’ € 0. Writing n - n’ = %(3 co€a — 1), we have the result that the constant
Hamiltonian

0
H c(o%stantz (4 1 1)

2n,n’ - A
Hconstant= m (4.12)

can produce evolution along the geodeSjg, This generalizes well known results in the
case of two-level systems [7].
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5. The Pancharatham geometric phase formula for three-level systems

The purpose of this section is to obtain the generalization of the result (3.11) for three-
level systems. For this we must determine the geometrical description of the most general
geodesic triangle oi®, up to an overallSU (3) transformation, and then use the general
connection (3.8) to find the geometric phase associated with this triangle.

Let A, B andC be three general points il such that no two of them enclose an angle
of % radians. Using the freedom of comm8#/ (3) action we can transpo# to a position
A© with a representative vector of the forin of equation (4.1). In this process I8t
and C move to locationsB’ and C’:

A B.CYS 40 p -

. 0 (5.1)
A0 ,O(l) — Iﬂ(l)l/f(l)T l/f(l) =lo}.
1

This pP (v ) is invariant under &/ (2)(SU(2)) subgroup ofSU(3). Exploiting this we
can next transporB’ to a positionB© while leavingA© fixed, and simultaneouslg’ to
someC”, such that:

U2
A0 g Y3 40 pO .

0 - (5.2)
BO 5 p@ — y @y @t v @ = | sing O<é&<—
cosé 2

thereby introducing the angle. We have also secured thay @, v@) is real positive.
Now these two density matricep¥ and p®@, are invariant under a particular diagonal
U (1) subgroup ofSU (3), whose elements are:

d(B) = diage2# &P &f) e SU(3) 0< B < 2r. (5.3)

We now have the freedom of transformatiahg), which leaveA© and B©© unchanged,
to moveC” to a convenient positio€©. A little thought shows that this can be achieved
as follows:

A0 po VY 0 pO ~O.

sinn cos¢
CO - y® = (e'XZ siny sin;) (5.4)
cosn
O<n<% Ogggg 0< x2 < 2m.

We have parametrize¢t® in the manner of equation (2.16): tiig(1) freedom allows us
to transform the phasg; to zero, and an overall phase freedom has been used to make
(v, @) real positive. We now see that the description of the most general geodesic
triangle in O, up to an overallSU (3) transformation, involves the four angle parameters
&, n, ¢, x2- These are therefore intrinsic to the shape and size of the triangle. This
counting agrees with the fact th&t/ (3) is eight-dimensional, and choosing three points on
O independently involves choosing twelve independent coordinates.

Now we consider the geometric phase for the geodesic triasfle B©, c©. Using
the result (3.8) based on the Bargmann invariant, and the conveniently chosen representative
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vectors in equations (5.1), (5.2), and (5.4), we find:

(pg[A(O)B(O)C(O)] - _ argw(l)7 1/,(2))(1’/,(2)7 ¢(3))(w(3)’ 1‘[,(1))
= +argy®, v
= arg(cost cosy + Sing siny sinze™%2)
— arg(1 + tané tany since™2). (5.5)
This is the generalization of the Pancharatnam formula (3.11). We see that thephase
plays an important rolep,[A© B©C©] can be nonzero only if is nonzero.
We can also express this geometric phase directly in terms of the vectors® and
n® e O corresponding to the vertices®, B©, @ of the geodesic triangle:
(pg[A(O)B(O)C(O)] = —arg TI’(,O(l),O(Z),O(s))

2
- 2450 -
(n(l) —+ n(z) —+ n(3))2 + 2n(l) . n(z) * n(3) — 2 ’

(5.6)

In this form theSU (3) invariance is explicit.

We may collect our results of this and the previous section to say: given any geodesic
triangle in the ray spac@ for three-level systems, it is possible to find a piecewise constant
Hamiltonian to produce evolution along this triangle, such that the dynamical phase vanishes,
and the geometric phase is then given by the intrinsic expression (5.5) and (5.6).

6. Concluding remarks

We have exploited the newly constructed extension of the Pdngpinere representation
from two- to three-level quantum systems, to develop a generalization of the Pancharatnam
geometric phase formula for cyclic evolution of such a system along a geodesic triangle in
state space. We have found that such a triangle is intrinsically defined by four angle type
parameters in contrast to the three needed for defining a triangle on the Boépteare,

$2; and have obtained the explicit and simple expression for the geometric phase in terms
of them.

It is easy to check that the original Pancharatnam formula (3.11) emerges from
equation (5.5) as a particular case. Namely if we take- 7, the three Hilbert space
vectors,y P, @ andy®, of equations (5.1), (5.2) and (5.4) all lie in the two-dimensional
2-3 subspace of(®, and involve just three angle parametersy and x»:

0 0 0
y® = (0) y®@ = (sing ) v® = (e‘x2 sinn) ) (6.1)
1 cos¢ cosy

Let the corresponding rays be represented by unit veetgrs:, andns on ans? and let
the sides of the corresponding spherical trianglezpk andc. Then, from equation (2.1),
we have:

ny-np=cosa = 2|(yP, y@) > - 1=cos %
ni-nz=cosh =2|(yP, y)2-1=cosy (6.2)
ny - ng = cosc = 2|(y?, v )2 — 1 = 2| cost cosy + sing sinpe??|? — 1.

Thusa = 2¢, b = 2 and in the case of the anglewe have

COS% = | cos& cosy + Siné sinne”?|. (6.3)
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Now from equation (5.5) the geometric phase in this case is given by:
0, [AQBOCO] = argcost cosn + sin sinpe™'%2) (6.4)

or equally well (apart from the sign) by:

COSE cosn + Sin& sinn cosy

| cost cosy + sing sinperz|

Focusing on the, dependence here (and as we have seen earlier this is the crucial aspect),
and using equation (6.2) we have:

cosg,[AQBOCO]) = (6.5)

. . (14 cosa + cosb + cosc)
COSE COS SIiN& Sinn COSyo = 6.6
s 7+ SIng siny cosxz 4cosa/2cosh/2 (6.6)

leading to

(14 cosa + cosb + cosc)
4cosa/2cosh/2cosc/2

However, the right-hand side here is precisely 1Z“Q$a, b, c), whereA(a, b, ¢) is the solid
angle subtended at the origin 6f by the spherical triangle with sides » andc. In this
way the Pancharatnam resgif[A@B©C©] = 1A(a, b, ¢) is recovered. (The sign can
also be recovered with some additional effort.)

This same verification leads us to the following significant remark: as long as one
is interested in cyclic evolution odiny quantum system along a geodesi@ngle in ray
space, however large the dimension of the Hilbert sgdamay be, our result (5.5) for the
geometric phase is applicable and is completely general. This is because a triangle involves
(at most) three independent vectaps?, v@, @ e H, and these always lie in some
three-dimensional subspace Hf Thus, nothing additional is needed to handle geometric
phases for cyclic evolutions along geodesic trianglesiMdevel systems, for anyw > 4.

Going back to the formula (5.5) based on the standard configurgtibny @ andy
of equations (5.1), (5.2) and (5.4), we see that the geometric phase for a geodesic triangle
in a three-level system state space depends on all the four pararjeters, and x,, used
to describe the triangle. Here the parametrization of the vertices follows the pattern of local
coordinates defined fa® in section 2. It is, however, possible to choose another standard
configuration for a geodesic triangle such that the geometric phase then depends only on
three of the four parameters. Thus by a fixetl (3) transformation one can arrange to
have:

1 cosé
I/f(l)/ — AW(D — (o) I/I(Z)/ — Al/f(z) — (Sil’]&‘)
0 0
/ siny’ cos¢’ 0 01
v = Ay® = (gm Sinn/sing’) A= ( 0 1 0) e SUJ)
cosn’ -1 0 0

(where we have retained the form of the local coordinatesCfprand thus the geodesic
triangle is described by four new parametérsy, ¢’ and x, which are functions o€, n,
¢ and x2. Then the geometric phase becomes

(pg[A(O)'B(O)'C(O)/] — (pg[A(O)B(O)C(O)]
= —argy Y,y )@y )@, y®)

= +argy?, y@)
= arg(1 + tan¢ tan’e™2). (6.9)

cos(p,[AQB@CO]) = (6.7)

(6.8)
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Now there is no dependence gh and this has happened becausentsin¢ = tan¢’. The
expression (6.9) in fact coincides in structure with what one would have obtained for a
two-level system, i.e. the original Pancharatnam result (6.4) with suitable reinterpretation of
parameters. The explanation for this is that in the expression for the three-vertex Bargmann
invariant involving vectorsy®, v@ and y® only the projection ofy® onto the two-
dimensional subspace spannedypy andv @ is relevant.

A discussion of feasible experimental schemes to check the validity of our main result
(5.5), at least in some nontrivial cases which do go beyond the two-level situation, will be
the subject of a forthcoming publication.
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