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Abstract. We describe a recently developed generalization of the Poincaré sphere method, to
represent pure states of a three-level quantum system in a convenient geometrical manner.
The construction depends on the properties of the groupSU(3) and its generators in the
defining representation, and uses geometrical objects and operations in an eight-dimensional
real Euclidean space. This construction is then used to develop a generalization of the well
known Pancharatnam geometric phase formula, for evolution of a three-level system along a
geodesic triangle in state space.

1. Introduction

Some time after the discovery by Berry in 1984 of the quantum mechanical geometric phase
in the framework of cyclic adiabatic evolution [1], Ramaseshan and Nityananda pointed out
in an important paper [2] that as early as 1956 Pancharatnam had put forward closely
related ideas in the context of polarization optics [3]. Subsequently Berry himself analysed
the significance of Pancharatnam’s work in the light of later developments [4]. The more
recent quantum kinematic approach to the geometric phase clearly brings out the way in
which a phase essentially identified by Pancharatnam is one of the two basic ingredients
involved in the very definition of the quantum geometric phase, the other being the so-called
dynamical phase [5].

Pancharatnam’s work made essential use of the Poincaré sphere representation for the
manifold of pure polarization states of a plane electromagnetic wave [6]. As is well known,
diametrically opposite points on the Poincaré sphere correspond to mutually orthogonal
polarization states incapable of interfering with one another. For two states of polarization
not mutually orthogonal in this sense Pancharatnam introduced a physically motivated
convention or rule which would tell us when these two states are ‘in phase’, i.e. capable of
interfering constructively to the maximum possible extent. More precisely, this relationship
is defined at the level of field amplitudes mapping onto given points on the Poincaré sphere.
He then went on to show that this relation of being ‘in phase’is not transitive. That is, if
we take three polarization statesA, B andC on the Poincaŕe sphere, and arrange that the
fields mapping ontoA andB are ‘in phase’, and similarly those mapping ontoB andC are
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‘in phase’, then in general the fields mapping ontoA andC are not ‘in phase’. He also
calculated the extent to which these last two fields are ‘out of phase’ and showed that this
‘phase difference’ equals one half the solid angle on the Poincaré sphere subtended by the
spherical triangleABC obtained by joining the verticesA, B andC by great circle arcs
(geodesic arcs) on the sphere.

This fundamental and early result of Pancharatnam has found a natural interpretation
in the context of two-level quantum systems, for which the space of pure state density
matrices is again the sphereS2. In the modern terminology for geometric phases, one is
(most often) interested in cyclic evolution in the state space, and the calculation of the
associated geometric phase. Evolution along a great circle arc onS2 is particularly simple
in that it can be generated by a constant (i.e. time-independent) Hamiltonian in such a way
that the dynamical phase vanishes. A geodesic triangle onS2 is then the simplest and
most elementary, yet nontrivial, cyclic evolution one can imagine for a two-level system;
it can be produced by a piecewise constant Hamiltonian, and the dynamical phase can
be arranged to vanish identically. Then the meaning of Pancharatnam’s result is that the
resulting geometric phase is one half the solid angle onS2 subtended by the triangle [7].

We may note in passing that while Pancharatnam’s original result refers principally
to the verticesA, B and C of a spherical triangle onS2, and calculates the degree of
nontransitiveness of the relation of two field amplitudes being ‘in phase’, in casting it into
the modern geometric phase language we are equally concerned with the great circle arcs
connecting these vertices, since we deal with continuous cyclic unitary or Hamiltonian
evolution of pure quantum states. It is for such evolutions that geometric phases are
customarily calculated. Two more remarks are not out of place at this point. One is that
in fact geometric phases can be perfectly well defined for noncyclic (and even nonunitary)
evolutions, though in this paper we shall not be concerned with them [8]. The other is
that for piecewise geodesic and overall cyclic evolutions in a general quantum system,
geometric phases get related to certain invariants introduced by Bargmann long ago [9], and
these invariants are in conception very close to Pancharatnam’s original motivations.

We shall refer to the ‘half the solid angle’ result as the Pancharatnam formula for
geometric phases for two-level systems undergoing piecewise geodesic cyclic evolution
along a spherical triangle onS2. The main purposes of this paper are: (i) to present a recently
developed generalization of the Poincaré sphere representation for pure states of three-level
quantum systems [10]; and (ii) to then obtain a generalization of the Pancharatnam formula
for such systems.

The material of this paper is arranged as follows. Section 2 outlines the generalization
of the Poincaŕe sphere for three-level systems. The Poincaré sphere,S2, gets replaced by
a certain four-dimensional simply connected region,O, contained wholly within the unit
sphere,S7, in eight-dimensional real Euclidean space. The transitive action ofSU(3) on
O, via eight-dimensional orthogonal rotations, some intrinsic properties ofO, and a local
coordinate system forO, are described so as to assist in forming a picture of this object.
Section 3 recalls very briefly the main features of the quantum kinematic approach to the
geometric phase of a general quantum system. Both the roles of ray space geodesics and the
Bargmann invariants are highlighted. The case of two-level systems, and the statement of
the Pancharatnam formula, are then given. It is pointed out that it is a fortunate circumstance
that ray space geodesics and geodesics onS2 happen to coincide in the case of two-level
systems. Finally the general formula for the geometric phase for any cyclic evolution of the
three-level system is given. Section 4 discusses the properties of ray space geodesics for
three-level systems, and their representation as curves inO. We find that the latter, while
they are plane curves, are not geodesics in the geometrical sense onS7. We also find that it
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is possible to construct constant Hamiltonians which would give rise to evolution along any
such geodesics. Section 5 puts together the ingredients of the previous sections to develop
the generalized Pancharatnam formula for three-level systems. This involves describing the
most general geodesic triangle for a three-level system state space, and then computing its
geometric phase. Whereas a geodesic triangle onS2 involves three independent intrinsic
parameters, for a geodesic triangle inO it turns out that four independent intrinsic parameters
are needed. The geometric phase then depends on all four of these parameters, and this
is borne out by the explicit formula for the phase. Section 6 contains some concluding
remarks.

2. Generalization of the Poincaŕe sphere representation for three-level systems

We recall very briefly the salient features of the Poincaré sphere representation for two-level
systems, using throughout the notations and terminology of quantum mechanics [12]. We
deal with a two-dimensional complex Hilbert space,H(2), unit vectors in which are denoted
by ψ,ψ ′ . . .. The density matrix corresponding to a pure state,ψ , is given by the projection
ρ = ψψ†. Its expansion in terms of the Pauli matrices,σj , leads to the Poincaré sphere
construction:

ρ = ψψ† = 1
2(1+ n · σ)

ρ† = ρ2 = ρ > 0 Trρ = 1⇔
n∗ = n n · n = 1⇔ n ∈ S2.

(2.1)

Thus each pure state in the quantum mechanical sense, or normalized ray, corresponds
in a one-to-one manner to a point on the two-dimensional unit sphere,S2, embedded in
Euclidean three-dimensional spaceR3. Since

ρ = ψψ† = 1
2(1+ n · σ) ρ ′ = ψ ′ψ ′† = 1

2(1+ n′ · σ)⇒
Tr(ρ ′ρ) = |(ψ ′, ψ)|2 = 1

2(1+ n′ · n)
(2.2)

we see that diametrically opposite points onS2 correspond to mutually orthogonal rays
or Hilbert space vectors. Here(ψ ′, ψ) is the inner product inH(2). Finally, if a vector,
ψ ∈ H(2), is subjected to a transformation,u ∈ SU(2), the representative point,n ∈ S2

undergoes an orthogonal rotation belonging toSO(3):

ψ ′ = uψ u ∈ SU(2)⇒
n′j = Rjk(u)nk
Rjk(u) = 1

2 Tr(σjuσku
†) R(u) ∈ SO(3).

(2.3)

As is well known, all elementsR ∈ SO(3) are realized in this way, and we have the coset
space identificationsS2 = SU(2)/U(1) = SO(3)/SO(2).

Now we present the natural generalization of this construction to three-level systems.
We deal with a three-dimensional complex Hilbert space,H(3), elements of which will be
again denoted byψ,ψ ′, . . .. The roles ofSU(2) and the Pauli matrices,σj , are now played
by the groupSU(3) via its defining representation, and the eight Hermitian generators,λr ,
in this representation [13]:

SU(3) = {A = 3× 3 complex matrix|A†A = 1, detA = 1} (2.4a)
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λ1 =
( 0 1 0

1 0 0
0 0 0

)
λ2 =

( 0 −i 0
i 0 0
0 0 0

)

λ3 =
( 1 0 0

0 −1 0
0 0 0

)
λ4 =

( 0 0 1
0 0 0
1 0 0

)

λ5 =
( 0 0 −i

0 0 0
i 0 0

)
λ6 =

( 0 0 0
0 0 1
0 1 0

)

λ7 =
( 0 0 0

0 0 −i
0 i 0

)
λ8 = 1√

3

( 1 0 0
0 1 0
0 0 −2

)
.

(2.4b)

The matricesλr obey characteristic commutation and anticommutation relations:

[λr, λs ] = 2ifrstλt {λr, λs} = 4
3δrs + 2drstλt

f123= 1 f458= f678=
√

3

2
f147= f246= f257= f345= f516= f637= 1

2

d118= d228= d338= −d888= 1√
3

d448= d558= d668= d778= − 1

2
√

3

d146= d157= −d247= d256= d344= d355= −d366= −d377= 1
2.

(2.5)

Here we have given the independent nonvanishing components of the completely
antisymmetricfrst and the completely symmetricdrst ; the former are theSU(3) structure
constants. Thesef and d symbols allow us to define both antisymmetric and symmetric
products among real vectorsa, b, . . . in real eight-dimensional Euclidean space,R8, the
result in each case being another such vector [10]:

(a∧b)r = frstasbt a∧b = −b∧a
(a ? b)r =

√
3drstasbt a ? b = b ? a. (2.6)

The significance of these definitions is thata∧b anda?b transform just asa andb do, under
the eight-dimensional adjoint representation ofSU(3). The matrices of this representation
are defined similarly to equation (2.3):

A ∈ SU(3)→ Drs(A) = 1
2 Tr(λrAλsA

†)

D(A′)D(A) = D(A′A)
D(A) ∈ SO(8).

(2.7)

However, in contrast to theSU(2)–SO(3) case, here the matricesD(A) that arise are only
an eight-parameter family, and so a very small portion indeed of the full twenty-eight-
parameter groupSO(8). In any case the required properties of the products (2.6) are:

D(A)a∧D(A)b = D(A)(a∧b)
D(A)a ? D(A)b = D(A)(a ? b). (2.8)

With this background, we can handle general pure state density matrices for three-level
systems [10]. Given a normalizedψ ∈ H(3), we form the density matrixρ = ψψ† and
expand it in terms of the unit matrix and theλr :

ψ ∈ H3 (ψ,ψ) = 1

ρ = ψψ† = 1
3(1+

√
3n · λ).

(2.9)

We then find in place of equation (2.2):

ρ† = ρ2 = ρ > 0 Trρ = 1⇔ n? = n n · n = 1 n ? n = n. (2.10)
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Thus each normalized ray for the three-level system corresponds uniquely in a one-to-one
manner to a unit vector,n ∈ S7, the seven-dimensional unit sphere inR8, which moreover
obeys the conditionn ? n = n. The set of all such real unit vectors inR8, a subset of
S7, is the analogue of the Poincaré sphere for three-level systems. Since it is in fact a very
small part ofS7, we give it a special symbol:

O = {n ∈ R8|n · n = 1,n ? n = n} ⊂ S7 ⊂ R8. (2.11)

This set,O, is a connected, simply connected four-dimensional region contained inS7,
and its points correspond one-to-one to pure states of a three-level system. It is in fact a
representation of the coset spaceSU(3)/U(2).

Some interesting geometric properties ofO may be mentioned. For two unit vectors,
ψ andψ ′ ∈ H(3), we find:

ρ = ψψ† ρ ′ = ψ ′ψ ′† ⇒ Tr(ρ ′ρ) = |(ψ ′, ψ)|2 = 1
3(1+ 2n′ · n)

06 Tr(ρ ′ρ) 6 1⇔ 06 cos−1(n′ · n) 6 2π

3
.

(2.12)

Thus mutually orthogonal vectors inH(3) do not lead to antipodal or diametrically opposite
points onO, but rather to points with a maximum opening angle of2π

3 radians. Indeed, if
n ∈ O, then−n 6∈ O. If one takes the three canonical basis vectors ofH(3) as usual, they
lead to three distinguished points or ‘poles’ onO:

(1, 0, 0)T → n3 =
√

3

2
n8 = 1

2 rest zero

(0, 1, 0)T → n3 = −
√

3

2
n8 = 1

2 rest zero

(0, 0, 1)T → n8 = −1 rest zero

(2.13)

each making an angle of2π3 with any other. These properties ofO may help one make
some sort of mental picture of this geometrical object embedded inS7.

The action ofSU(3) on vectors inH(3) leads to adjoint action onO:

A ∈ SU(3) : ψ ′ = Aψ ⇒ n′ = D(A)n. (2.14)

Thus one has here a (small set of) rigid eight-dimensional orthogonal rotations, which will
prove convenient later on. Moreover, sinceO is the coset spaceSU(3)/U(2), this adjoint
action of SU(3) on O is transitive. This will also be exploited later. GeneralSO(8)
rotations of course do not preserve the regionO of S7.

For practical calculations it is convenient to introduce four independent local angle type
variables which can be used as coordinates over (almost all of)O. Let us write a general
unit vector,ψ ∈ H(3), as

ψ =
(
ψ1

ψ2

ψ3

)
ψ†ψ = |ψ1|2+ |ψ2|2+ |ψ3|2 = 1. (2.15)

Then omitting the part ofO corresponding toψ3 = 0 (this is a two-dimensional region,
essentially anS2, see below), over the rest ofO we introduceθ , φ andχ1, χ2 in this way†:

(ψ1, ψ2, ψ3) = (overall phase)(eiχ1 sinθ cosφ, eiχ2 sinθ sinφ, cosθ)

06 θ < π

2
06 φ 6 π

2
06 χ1, χ2 < 2π.

(2.16)

† The choice of these variables differs from that in [10].
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Figure 1. A pictorial description of almost all of the spaceO (the space of all states of the
three-level system). The local coordinatesθ , φ andχ1, χ2 are such thatθ andφ define a point
in the positive octant ofS2, i.e. 06 θ , φ 6 π

2 and for a given point on this octant we have a
torus defined by two-angle variables 06 χ1, χ2 < 2π .

The limits onθ , φ reflect the nonvanishing ofψ3, and the fact that the real three-dimensional
unit vector(|ψ1|, |ψ2|, |ψ3|) has non-negative components. Thusθ , φ denotes a point on
the first octant of anS2. Given |ψ3| > 0, χ1 is the phase ofψ1 relative toψ3 (and is well
defined except whenφ = π

2 ); andχ2 is the phase ofψ2 relative toψ3 (and is well defined
except whenφ = 0), see figure 1. We need to remember thatθ , φ determine the magnitudes
of the components ofψ , while χ1, χ2 give their relative phases. All four taken together
determine one point in the portion ofO with ψ3 6= 0.

We can easily obtain the expressions fornr in these local coordinates. Combining
equations (2.9) and (2.16) we get:

nr =
√

3

2
ψ†λrψ

n =
√

3

(
sin2 θ sinφ cosφ cos(χ2− χ1), sin2 θ sinφ cosφ sin(χ2− χ1),

1
2 sin2 θ(cos2 φ − sin2 φ), sinθ cosθ cosφ cosχ1,

− sinθ cosθ cosφ sinχ1, sinθ cosθ sinφ cosχ2,

− sinθ cosθ sinφ sinχ2,
1

2
√

3
(1− 3 cos2 θ)

)
.

(2.17)

The recovery of the Poincaré sphere,S2, for a two-dimensional subspace ofH(3)
is straightforward. Consider, as an example, vectorsψ ∈ H(3) with a vanishing third
component (just the points ofO omitted in the local coordinatization (2.16) ofO):

ψ =
(
ψ1

ψ2

0

)
=
( eiχ1 cosφ

eiχ2 sinφ
0

)
06 φ 6 π

2
06 χ1, χ2 < 2π.

(2.18)
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Then the eight-vectorn has only four nonvanishing components:

(n1, n2, n3) =
√

3

2
(sin 2φ cos(χ2− χ1), sin 2φ sin(χ2− χ1), cos 2φ)

n8 = 1
2

n4 = n5 = n6 = n7 = 0.

(2.19)

As φ and(χ2−χ1) vary in the appropriate ranges, we see that we obtain a certain sphere,S2,
embedded withinO, centred on the point(0, 0, 0, 0, 0, 0, 0, 1

2), of radius
√

3
2 , and contained

entirely within the 1–2–3–8 subspace ofR8. If we consider two-dimensional subspaces in
H(3) different from (2.18), we clearly obtainSU(3) transforms of the above situation. All
these variousS2’s are off-centre inR8: indeed their centres lie on a sphere inR8 centred
at the origin ofR8 and of radius1

2.

3. Background to the geometric phase and Pancharatnam’s formula

Consider a general quantum mechanical system whose pure states are described by unit
vectors in a complex Hilbert space,H, of any dimension. The corresponding ray space
will be denoted byR. Let C be a continuous piecewise smooth parametrized curve of unit
vectors inH:

C = {ψ(s)|s1 6 s 6 s2} ⊂ H (3.1)

and letC be its image inR, likewise continuous and piecewise smooth:

C = {ρ(s) = ψ(s)ψ(s)†|s1 6 s 6 s2} ⊂ R. (3.2)

In caseψ(s2) andψ(s1) determine the same ray, and in particularψ(s2) = ψ(s1) in which
caseC is closed, the imageC is closed; however, in general we need not assume this.
The geometric phase associated withC is the difference between a total (or Pancharatnam)
phase and a dynamical phase, each of which is a functional ofC [5]:

ϕg[C] = ϕp[C] − ϕdyn[C]

ϕp[C] = arg(ψ(s1), ψ(s2))

ϕdyn[C] = Im
∫ s2

s1

ds (ψ(s), ψ̇(s)).

(3.3)

The quantity,ϕg[C], is invariant under both local smooth phase changes inψ(s), and under
smooth reparametrizations—for these reasons it is a geometric quantity dependent onC

rather than onC.
In this context an important role is played bygeodesics in the spaceR [5]. Given the

continuous curveC ⊂ R (with nonorthogonal end points for definiteness), a nondegenerate
positive definite length functional,L[C], can be set up, which is also reparametrization
invariant:

L[C] =
∫ s2

s1

ds {(ψ̇(s), ψ̇(s))− (ψ(s), ψ̇(s))(ψ̇(s), ψ(s))} 12 . (3.4)

Extremizing this functional (with fixed end points), we arrive at the concept of geodesics
in R. Any Hilbert space lift of such a geodesic, with any choice of parametrization, may
then be called a geodesic inH. It then turns out that every geodesic inR has vanishing
geometric phase:

C = geodesic inR⇒ ϕg[C] = 0 (3.5)
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and this accounts for their importance. The simplest description of a geodesic, which can
always be achieved, is as follows. Let the end points ofC be ρ(1) and ρ(2), assumed
nonorthogonal, and choose unit vectorsψ(1) andψ(2) such that:

ρ(1) = ψ(1)ψ(1)† ρ(2) = ψ(2)ψ(2)†

(ψ(1), ψ(2)) = real positive.
(3.6)

Thusψ(1) andψ(2) are ‘in phase’ in the Pancharatnam sense. Then the geodesicGgeo⊂ R
connectingρ(1) to ρ(2) is the ray space image of the following curveCgeo⊂ H:

Cgeo= {ψ(s)|06 s 6 s0}
ψ(s) = ψ(0) coss + ψ̇(0) sins

ψ(0) = ψ(1) ψ̇(0) = (ψ(2) − ψ(1)(ψ(1), ψ(2)))/(1− (ψ(1), ψ(2))2)
1
2

s0 = cos−1(ψ(−1), ψ(2)).

(3.7)

Exploiting the fundamental result (3.5) we obtain a very attractive expression for
the geometric phase in the following particular situation. Choose a set of points
ρ(1), ρ(2), . . . , ρ(n) ∈ R in a definite sequence, assume for definiteness that no two
consecutive points are mutually orthogonal, and also thatρ(n) andρ(1) are nonorthogonal.
Connectρ(1) to ρ(2), ρ(2) to ρ(3), . . . , ρ(n) to ρ(1) by geodesic arcs, so that we obtain a
closed curveC ⊂ R in the form of ann-sided polygon made up of geodesic pieces. Then
we have [5]:

C = geodesic polygon inR with verticesρ(1), ρ(2), . . . , ρ(n)

ϕg[C] = −arg(ψ(1), ψ(2))(ψ(2), ψ(3)) · · · (ψ(n), ψ(1))

= −arg Tr(ρ(1)ρ(2) . . . ρ(n))

ρ(1) = ψ(1)ψ(1)† ρ(2) = ψ(2)ψ(2)†, . . . ρ(n) = ψ(n)ψ(n)†.

(3.8)

Here it is evident that the phases of the vectorsψ(1), ψ(2), . . . , ψ(n) can be freely chosen.
The result (3.8) connects the geometric phase for a closed polygon to the Bargmann invariant
of quantum mechanics, the expression(ψ(1), ψ(2))(ψ(2), ψ(3)) . . . (ψ(n), ψ(1)), namely: the
former is the negative of the argument of the latter. The point to emphasize is that the
definition of the Bargmann invariant requires specifying just the vertices of the polygon,
while the definition of the geometric phase requires also connecting them in sequence by
geodesic arcs so that we have a closed loopC ⊂ R.

With this background from the general theory of the geometric phase we relate these
results to the case of two-level systems, quote the Pancharatnam formula and then give the
general expression forϕg[C] for three-level systems. For two-level systems we have seen
that the spaceR is the Poincaŕe sphereS2. It is now a happy coincidence that geodesics
in R map exactly on to geodesics onS2 in the more familiar Euclidean sense. This can
be seen as follows. Without loss of generality, by using a suitableSU(2) transformation,
we may assume that the pointsρ(1) andρ(2) to be connected by a geodesic are the points
n(1) = (0, 0, 1), n(2) = (sin 2α, 0, cos 2α) on S2, with representative vectorsψ(1) and
ψ(2) ∈ H(2) chosen as follows:

ψ(1) =
(

1
0

)
ψ(2) =

(
cosα
sinα

)
. (3.9)
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Then applying the result (3.7), the ray space geodesic connectingρ(1) to ρ(2) is determined
as follows:

ψ(s) =
(

coss
sins

)
n(s) = Tr ρ(s)σ = (ψ(s),σψ(s))

= (sin 2s, 0, cos 2s) 06 s 6 α.

(3.10)

We see that the curve described byn(s) on S2 is indeed a great circle arc, a part of the
‘Greenwich meridian’; and by the action ofSU(2) onR translated into the action ofSO(3)
on S2, we conclude thatany ray space geodesic inR appears as some great circle arc on
S2. Thus the two definitions of geodesics do coincide in this case.

Let nowA, B andC be any three points onS2, no two being diametrically opposite to
one another. Joining them by great circle arcs (each less thanπ in extent) we get a geodesic
triangle4(A,B,C) on S2. Then the Pancharatnam formula [3, 4, 2] is the statement that
for any two-level system:

ϕg[4(A,B,C)] = 1
2�

� = solid angle subtended by the triangleA, B, C at the origin ofS2.
(3.11)

Here the right-hand side is interpreted to be positive (negative) if, as viewed from the outside
of S2, the triangleABC is described in the counter clockwise (clockwise) sense. It is this
formula that we shall generalize in section 5.

Now we give the general formula for geometric phases for three-level systems [10].
Consider a closed loopC ⊂ O, and assume for definiteness thatψ3 6= 0 throughout. Then
ϕg[C] is given by the following integral alongC:

ϕg[C] = −
∮
C⊂O

sin2 θ(cos2 φ dχ1+ sin2 φ dχ2). (3.12)

We note that this formula holds whenC is a closed loop. In the succeeding sections we
develop the properties of geodesics inO and then generalize equation (3.11).

4. Ray space geodesics for three-level systems

We have seen that the transitive action ofSU(3) on the ray space,O, for three-level systems
is given by (an eight-parameter subset of) rigid orthogonal rotations in real Euclidean eight-
dimensional space, when points ofO are identified with vectorsn as in equation (2.11).
Based on this we may describe the details of any one conveniently chosen geodesic inO;
and then any other would be a suitableSO(8) transform of this one, so that the geometrical
shape and structure in an intrinsic sense are unaltered.

Guided by the constructions of section 3, equations (3.9) and (3.10) let us choose two
points inO corresponding to the following two unit vectors inH(3):

ψ(1) =
( 0

0
1

)
ψ(2) =

( 0
sinα
cosα

)
n(1) = (0, 0, 0, 0, 0, 0, 0,−1)

n(2) =
√

3

2

(
0, 0,− sin2 α, 0, 0, 2 sinα cosα, 0,

1√
3
(1− 3 cos2 α)

)
.

(4.1)

It is easy to see that, givenany pair of three-level pure-state density matrices,ρ(1) and
ρ(2), such that Tr(ρ(1)ρ(2)) = cos2 α > 0, we can exploit the action ofSU(3) onH(3), and
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freedom of phases, to putρ(1) andρ(2) into the configurations corresponding to the vectors
ψ(1) andψ(2) above. Then the ray space geodesicC(0)geo connectingn(1) andn(2) is easily
found on the basis of the general formula (3.7):

ψ(s) =
( 0

sins
coss

)

C(0)geo : n(s) =
√

3

2
ψ(s)†λψ(s) (4.2)

=
√

3

2

(
0, 0,− sin2 s, 0, 0, 2 sins coss, 0,

1√
3
(1− 3 cos2 s)

)
06 s 6 α.

This curve{n(s)} ⊂ O has only three nonvanishing components, namely,n3(s), n6(s) and
n8(s). The interesting questions are whether it is a plane curve, whether it coincides with
a geodesic arc as defined in the sense of eight-dimensional Euclidean geometry onS7, and
whether it has any other important geometric features.

The first observation we may make is that since the componentsn1, n2, n4, n5 andn7

all vanish, this curve,C(0)geo, lies entirely in a three-dimensional subspace ofR8. By SU(3)
action this statement is then true for all ray space geodesicsCgeo when drawn inO. Next
we remark that a geodesic onS7 in the Euclidean sense would be part of the intersection of
a two-dimensional plane inR8 passing through the origin, with S7. We can immediately
see thatC(0)geo is not of this kind; for example, the three vectorsn(0),n( α2 ) andn(α) are
easily checked to be linearly independent. Thus, in striking contrast to the situation on the
Poincaŕe sphere,S2, for two-level systems, hereray space geodesics onO are not geodesic
arcs in the sense of Euclidean eight-dimensional geometry.

Nevertheless we can show thatC(0)geo is a plane curve, though the plane on which it lies
is off centre inR8, i.e. it does not pass through the origin or the centre ofS7. For this we

need to work with the combinations
√

3n3+n8
2 and n3−

√
3n8

2 obtained fromn3 andn8 by an
orthogonal transformation. Then we find:

√
3n3(s)+ n8(s)

2
= −1

2
n6(s) =

√
3 sins coss

n3(s)−
√

3n8(s)

2
= −
√

3

2
(1− 2 cos2 s).

(4.3)

Thus, in the three-dimensionaln3–n6–n8 subspace, this geodesicC(0)geo is a curve lying in the

two-dimensional plane
√

3n3+n8
2 = − 1

2. Ray space geodesicsCgeo for three-level systems,
when described as curves{n(s)} ⊂ O, are really like arcs of constant latitude onS2, and
not geodesic arcs at all. For this reason, hereafter the term geodesic will refer exclusively
to ray space geodesics, with no further qualification.

In the description ofO using coordinatesθ , φ andχ1, χ2 the geodesicC(0)geo appears as
follows:

C(0)geo : θ(s) = s φ(s) = π

2
χ1(s) undefined χ2(s) = 0 06 s 6 α.

(4.4)

Thus the projection ofC(0)geo onto the octant ofS2 with spherical polar anglesθ , φ happens
to be a great circle arc in the usual sense. However, this is not expected to be true for a
general geodesicCgeo⊂ O.
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One can now ask for the most general three-level system Hamiltonian which reproduces
the evolution ofψ(s) with respect tos, as already specified in equation (4.2), and whether
it can be independent ofs. A general Hermitian Hamiltonian can be written in terms of
nine real functions ofs as

H(s) = h0(s)+ h(s) · λ (4.5)

while the quantum mechanical evolution equations forψ(s) andρ(s) become:

i
d

ds
ψ(s) = H(s)ψ(s)

d

ds
n(s) = 2h(s)∧n(s).

(4.6)

An easy calculation shows that the most generalH(s) has four independent real arbitrary
functions ofs, namelya(s), b(s), c(s) andd(s) in:

h(s) = (a(s) coss, b(s) coss,
√

3c(s)+ d(s)(cos2 s − sin2 s),

−a(s) sins,−b(s) sins, d(s) coss sins,−1, c(s))

h0(s) = 2√
3
c(s)− d(s) sin2 s.

(4.7)

Moreover we also find with this general Hamiltonian:

Tr(ρ(s)H(s)) = (ψ(s),H(s)ψ(s))
= h0(s)+ 2√

3
n(s) · h(s)

= 0. (4.8)

This is consistent with the vanishing of the dynamical phase as the state evolves along
{ψ(s)} of equation (4.2), which is directly checked to be true. In addition if we wish to
have a constant Hamiltonian producing this evolution, we must seta(s) = b(s) = d(s) = 0,
c(s) = c0 = constant and then we get:

H
(0)
constant=

(
2√
3

1+
√

3λ3+ λ8

)
c0− λ7. (4.9)

It is possible to express this simple constant Hamiltonian directly in terms of the end points
n(1) andn(2) of the geodesicC(0)geo given in equation (4.1). Namely one finds:

(n(1)∧ n
(2))r = − 3

2(sinα cosα)δr7 (4.10)

which, if we set the constantc0 to zero, leads to:

H
(0)
constant=

n(1)∧ n(2) · λ
|n(1)∧ n(2)|

. (4.11)

We can now generalize these results to any geodesicCgeo ⊂ O connecting any two
points,n, n′ ∈ O. Writing n · n′ = 1

2(3 cos2 α − 1), we have the result that the constant
Hamiltonian

Hconstant= 2n∧n′ · λ
3 sinα cosα

(4.12)

can produce evolution along the geodesicCgeo. This generalizes well known results in the
case of two-level systems [7].
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5. The Pancharatnam geometric phase formula for three-level systems

The purpose of this section is to obtain the generalization of the result (3.11) for three-
level systems. For this we must determine the geometrical description of the most general
geodesic triangle onO, up to an overallSU(3) transformation, and then use the general
connection (3.8) to find the geometric phase associated with this triangle.

Let A, B andC be three general points inO such that no two of them enclose an angle
of 2π

3 radians. Using the freedom of commonSU(3) action we can transportA to a position
A(0) with a representative vector of the formψ(1) of equation (4.1). In this process letB
andC move to locationsB ′ andC ′:

A,B,C
SU(3)−→ A(0), B ′, C ′ :

A(0)→ ρ(1) = ψ(1)ψ(1)† ψ(1) =
( 0

0
1

)
.

(5.1)

This ρ(1)(ψ(1)) is invariant under aU(2)(SU(2)) subgroup ofSU(3). Exploiting this we
can next transportB ′ to a positionB(0) while leavingA(0) fixed, and simultaneouslyC ′ to
someC ′′, such that:

A(0), B ′, C ′
U(2)−→A(0), B(0), C ′′ :

B(0)→ ρ(2) = ψ(2)ψ(2)† ψ(2) =
( 0

sinξ
cosξ

)
0< ξ <

π

2

(5.2)

thereby introducing the angleξ . We have also secured that(ψ(1), ψ(2)) is real positive.
Now these two density matrices,ρ(1) and ρ(2), are invariant under a particular diagonal
U(1) subgroup ofSU(3), whose elements are:

d(β) = diag(e−2iβ, eiβ, eiβ) ∈ SU(3) 06 β < 2π. (5.3)

We now have the freedom of transformationsd(β), which leaveA(0) andB(0) unchanged,
to moveC ′′ to a convenient positionC(0). A little thought shows that this can be achieved
as follows:

A(0), B(0), C ′′
U(1)−→A(0), B(0), C(0) :

C(0)→ ψ(3) =
( sinη cosζ

eiχ2 sinη sinζ
cosη

)
0< η <

π

2
06 ζ 6 π

2
06 χ2 < 2π.

(5.4)

We have parametrizedψ(3) in the manner of equation (2.16): theU(1) freedom allows us
to transform the phaseχ1 to zero, and an overall phase freedom has been used to make
(ψ(1), ψ(3)) real positive. We now see that the description of the most general geodesic
triangle inO, up to an overallSU(3) transformation, involves the four angle parameters
ξ , η, ζ , χ2. These are therefore intrinsic to the shape and size of the triangle. This
counting agrees with the fact thatSU(3) is eight-dimensional, and choosing three points on
O independently involves choosing twelve independent coordinates.

Now we consider the geometric phase for the geodesic triangleA(0), B(0), C(0). Using
the result (3.8) based on the Bargmann invariant, and the conveniently chosen representative
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vectors in equations (5.1), (5.2), and (5.4), we find:

ϕg[A(0)B(0)C(0)] = −arg(ψ(1), ψ(2))(ψ(2), ψ(3))(ψ(3), ψ(1))

= +arg(ψ(3), ψ(2))

= arg(cosξ cosη + sinξ sinη sinζe−iχ2)

= arg(1+ tanξ tanη sinζe−iχ2). (5.5)

This is the generalization of the Pancharatnam formula (3.11). We see that the phaseχ2

plays an important role:ϕg[A(0)B(0)C(0)] can be nonzero only ifχ2 is nonzero.
We can also express this geometric phase directly in terms of the vectorsn(1), n(2) and

n(3) ∈ O corresponding to the verticesA(0), B(0), C(0) of the geodesic triangle:

ϕg[A(0)B(0)C(0)] = −arg Tr(ρ(1)ρ(2)ρ(3))

= − tan−1

[
2
√

3n(1) · n(2)∧ n(3)
(n(1) + n(2) + n(3))2+ 2n(1) · n(2) ? n(3) − 2

]
. (5.6)

In this form theSU(3) invariance is explicit.
We may collect our results of this and the previous section to say: given any geodesic

triangle in the ray spaceO for three-level systems, it is possible to find a piecewise constant
Hamiltonian to produce evolution along this triangle, such that the dynamical phase vanishes,
and the geometric phase is then given by the intrinsic expression (5.5) and (5.6).

6. Concluding remarks

We have exploited the newly constructed extension of the Poincaré sphere representation
from two- to three-level quantum systems, to develop a generalization of the Pancharatnam
geometric phase formula for cyclic evolution of such a system along a geodesic triangle in
state space. We have found that such a triangle is intrinsically defined by four angle type
parameters in contrast to the three needed for defining a triangle on the Poincaré sphere,
S2; and have obtained the explicit and simple expression for the geometric phase in terms
of them.

It is easy to check that the original Pancharatnam formula (3.11) emerges from
equation (5.5) as a particular case. Namely if we takeζ = π

2 , the three Hilbert space
vectors,ψ(1), ψ(2) andψ(3), of equations (5.1), (5.2) and (5.4) all lie in the two-dimensional
2–3 subspace ofH(3), and involve just three angle parameters,ξ , η andχ2:

ψ(1) =
( 0

0
1

)
ψ(2) =

( 0
sinξ
cosξ

)
ψ(3) =

( 0
eiχ2 sinη

cosη

)
. (6.1)

Let the corresponding rays be represented by unit vectorsn1, n2 andn3 on anS2 and let
the sides of the corresponding spherical triangle bea, b andc. Then, from equation (2.1),
we have:

n1 · n2 = cosa = 2|(ψ(1), ψ(2))|2− 1= cos 2ξ

n1 · n3 = cosb = 2|(ψ(1), ψ(3))|2− 1= cos 2η

n2 · n3 = cosc = 2|(ψ(2), ψ(3))|2− 1= 2| cosξ cosη + sinξ sinηeiχ2|2− 1.

(6.2)

Thusa = 2ξ , b = 2η and in the case of the anglec we have

cos
c

2
= | cosξ cosη + sinξ sinηeiχ2|. (6.3)
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Now from equation (5.5) the geometric phase in this case is given by:

ϕg[A(0)B(0)C(0)] = arg(cosξ cosη + sinξ sinηe−iχ2) (6.4)

or equally well (apart from the sign) by:

cos(ϕg[A(0)B(0)C(0)]) = cosξ cosη + sinξ sinη cosχ2

| cosξ cosη + sinξ sinηeiχ2| . (6.5)

Focusing on theχ2 dependence here (and as we have seen earlier this is the crucial aspect),
and using equation (6.2) we have:

cosξ cosη + sinξ sinη cosχ2 = (1+ cosa + cosb + cosc)

4 cosa/2 cosb/2
(6.6)

leading to

cos(ϕg[A(0)B(0)C(0)]) = (1+ cosa + cosb + cosc)

4 cosa/2 cosb/2 cosc/2
. (6.7)

However, the right-hand side here is precisely cos1
24(a, b, c), where4(a, b, c) is the solid

angle subtended at the origin ofS2 by the spherical triangle with sidesa, b andc. In this
way the Pancharatnam resultϕg[A(0)B(0)C(0)] = 1

24(a, b, c) is recovered. (The sign can
also be recovered with some additional effort.)

This same verification leads us to the following significant remark: as long as one
is interested in cyclic evolution ofany quantum system along a geodesictriangle in ray
space, however large the dimension of the Hilbert spaceH may be, our result (5.5) for the
geometric phase is applicable and is completely general. This is because a triangle involves
(at most) three independent vectorsψ(1), ψ(2), ψ(3) ∈ H, and these always lie in some
three-dimensional subspace ofH. Thus, nothing additional is needed to handle geometric
phases for cyclic evolutions along geodesic triangles forN -level systems, for anyN > 4.

Going back to the formula (5.5) based on the standard configurationψ(1), ψ(2) andψ(3)

of equations (5.1), (5.2) and (5.4), we see that the geometric phase for a geodesic triangle
in a three-level system state space depends on all the four parameters,ξ , η, ζ andχ2, used
to describe the triangle. Here the parametrization of the vertices follows the pattern of local
coordinates defined forO in section 2. It is, however, possible to choose another standard
configuration for a geodesic triangle such that the geometric phase then depends only on
three of the four parameters. Thus by a fixedSU(3) transformation one can arrange to
have:

ψ(1)′ = Aψ(1) =
( 1

0
0

)
ψ(2)′ = Aψ(2) =

( cosξ
sinξ

0

)

ψ(3)′ = Aψ(3) =
( sinη′ cosζ ′

eiχ2 sinη′ sinζ ′

cosη′

)
A =

( 0 0 1
0 1 0
−1 0 0

)
∈ SU(3)

(6.8)

(where we have retained the form of the local coordinates forO), and thus the geodesic
triangle is described by four new parametersξ , η′, ζ ′ andχ2 which are functions ofξ , η,
ζ andχ2. Then the geometric phase becomes

ϕg[A(0)
′
B(0)

′
C(0)

′
] = ϕg[A(0)B(0)C(0)]

= −arg(ψ(1)′ , ψ(2)′)(ψ(2)′ , ψ(3)′)(ψ(3)′ , ψ(1)′)

= +arg(ψ(3)′ , ψ(2)′)

= arg(1+ tanξ tanζ ′e−iχ2). (6.9)
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Now there is no dependence onη′, and this has happened because tanη sinζ = tanζ ′. The
expression (6.9) in fact coincides in structure with what one would have obtained for a
two-level system, i.e. the original Pancharatnam result (6.4) with suitable reinterpretation of
parameters. The explanation for this is that in the expression for the three-vertex Bargmann
invariant involving vectorsψ(1), ψ(2) andψ(3) only the projection ofψ(3) onto the two-
dimensional subspace spanned byψ(1) andψ(2) is relevant.

A discussion of feasible experimental schemes to check the validity of our main result
(5.5), at least in some nontrivial cases which do go beyond the two-level situation, will be
the subject of a forthcoming publication.
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